Robust Computer Algebra, Theorem Proving, and Oracle AI

نویسندگان

  • Gopal P. Sarma
  • Nick J. Hay
چکیده

In the context of superintelligent AI systems, the term “oracle” has two meanings. One refers to modular systems queried for domain-specific tasks. Another usage, referring to a class of systems which may be useful for addressing the value alignment and AI control problems, is a superintelligent AI system that only answers questions. The aim of this manuscript is to survey contemporary research problems related to oracles which align with long-term research goals of AI safety. We examine existing question answering systems and argue that their high degree of architectural heterogeneity makes them poor candidates for rigorous analysis as oracles. On the other hand, we identify computer algebra systems (CASs) as being primitive examples of domain-specific oracles for mathematics and argue that efforts to integrate computer algebra systems with theorem provers, systems which have largely been developed independent of one another, provide a concrete set of problems related to the notion of provable safety that has emerged in the AI safety community. We review approaches to interfacing CASs with theorem provers, describe well-defined architectural deficiencies that have been identified with CASs, and suggest possible lines of research and practical software projects for scientists interested in AI safety.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fixed point method for proving the stability of ring $(alpha, beta, gamma)$-derivations in $2$-Banach algebras

In this paper, we first present the new concept of $2$-normed algebra. We investigate the structure of this algebra and give some examples. Then we apply a fixed point theorem to prove the stability and hyperstability of $(alpha, beta, gamma)$-derivations in $2$-Banach algebras.

متن کامل

Experiments with an Agent-Oriented Reasoning System

This paper discusses experiments with an agent oriented approach to automated and interactive reasoning. The approach combines ideas from two sub elds of AI (theorem proving/proof planning and multi-agent systems) and makes use of state of the art distribution techniques to decentralise and spread its reasoning agents over the internet. It particularly supports cooperative proofs between reason...

متن کامل

Computer Algebra Meets Automated Theorem Proving: Integrating Maple and PVS

We describe an interface between version 6 of the Maple computer algebra system with the PVS automated theorem prover. The interface is designed to allow Maple users access to the robust and checkable proof environment of PVS. We also extend this environment by the provision of a library of proof strategies for use in real analysis. We demonstrate examples using the interface and the real analy...

متن کامل

Towards Lean Proof Checking

Logical formal systems are ineecient at computations. In order to increase their eeciency, we aim to extend these systems with computational power. In this paper, we suggest a general, powerful syntax, called oracle types, to extend type theories with computational power; the resulting systems, which combine the logical abilities of logical formal systems and the computational power of term rew...

متن کامل

Automated Theorem Proving in the Homogeneous Model with Clifford Bracket Algebra

A Clifford algebra has three major multiplications: inner product, outer product and geometric product. Accordingly, the same Clifford algebra has three versions: Clifford vector algebra, which features on inner products and outer products of multivectors; Clifford bracket algebra, which features on pseudoscalars and inner products of vectors; Clifford geometric algebra, which features on geome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Informatica (Slovenia)

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2017